HONEYEATERS: CALLS, NECTAR AND POLLINATION

HONEYEATERS: CALLS, NECTAR AND POLLINATION

By Vishesh Leon Diengdoh 14th December at 11:30AM

When I had camped nearby Port Arthur in the Tasman Peninsula, this November, I was woken up at five in the morning by eight or nine Yellow Wattlebirds who kept calling in a sequence and repeating this for at least half an hour. From within my tent, I counted eight, based on the loudness and direction of the call, the ninth call was too far to make out. The same thing happened like clockwork the next morning as well. Its call has been described as a person vomiting and I once heard someone say it sounded like a deranged chicken. Those are accurate descriptions and if you have not heard what a Yellow Wattlebird sounds like you should give it a listen. I’ve noticed that a lot of birds in Australia have a screaming like calls (they sound amazing but not at 5 in the morning) and this leads me to read a book by Tim Low called Where song began. One of the things I learned from the book was that birds scream for nectar present in the flowers. The amount of nectar available to birds in Australia is enough to make nectar feeding birds defend it with loud aggressive calls to assert possession.

YellowWattlebird

Figure: Yellow Wattlebird, Anthochaera paradoxa is Australia’s largest honeyeater and endemic to Tasmania and King Island (Image source: http://www.birdlife.org.au/bird-profile/yellow-wattlebird)

Honeyeaters are nectarivorous birds of the Meliphagidae family which are distributed from eastern Indonesia to Palau, Hawaiian Islands, New Zealand and Australia. It is one of the largest family in the region with more than 170 species, with nearly 70 species occurring in Australia. Some honeyeaters are brightly coloured with striking patterns, but most are covered in shades of green, brown or grey. A common feature is a naked area on the head and presence of conspicuous clump of feathers which are often yellow or white. Males and females are nearly identical in appearance with a few exceptions (Longmore, 1991).

Honeyeaters have brush-tip tongues with numerous bristles that are long and fine allowing them to collect nectar across large surfaces and tiny fissures on tree branches. These features of the honeyeater’s tongue are different from other nectarivorous birds such as sunbirds and hummingbirds (Paton and Collins, 1989). In addition to nectar, they also consume fruits, berries, insects, manna and lerp (Barker and Vestjens, 1990).

tonguemorphology

Figure: Gross morphology and appearance in transverse sections of the brush-tipped tongue of the Spiny-cheeked Honeyeater (Acanthagenys rufogulari) (Image source: Paton and Collins, 1989)

Honeyeaters are conspicuous, highly active and aggressive both among themselves and with other species (Longmore, 1991). Although honeyeaters exhibit aggressive behaviour, a level of coexistence can exist resulting in a community of diverse honeyeaters. According to Ford (1979), larger species can easily defend a nectar source (interference competition) while smaller species are more efficient at feeding (exploitation completion). These two types of competitions create a balance to maintain species diversity in an area where nectar abundance varies spatially and temporally.

In Australia, Honeyeaters are among the major flower feeders. The genera most frequently visited are Eucalyptus, Callistemon, Banksia, Grevillea, Adenanthos, Epacris, Astroloma, Amyema, Correa, Xanthorrhoea, Anigozanthos and Eremophila. The genus Eucalyptus, with 74 species is visited by 83 species of birds making it one of the most important genus. The plant-bird relation in Australia exhibits a generalist relationship with birds visiting a range of flowers. This is different from the specific relationship between hummingbirds and plants in tropical America. There is no definitive indication as to why numerous and dominant plant genera in Australia would be pollinated by birds. Compared to insects, birds are active throughout the year and are more reliable when the flowering seasons and climate are erratic. Birds travel further distances than insects improving chances of outcrossing in plants (Ford et al., 1979).

According to the projections by Sekercioglu et al. (2004), 6-14% of all bird’s species will be extinct by 2100 and this will result in the decline of important ecosystem processes such as seed dispersal and pollination. Nectar and fruit-eating birds are expected to have a higher than average extinction which will, in turn, affect populations and communities. This would have significant importance in Australia and other oceanic regions where pollinating birds are higher than other parts of the world.

The Australian Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) and the International Union for Conservation of Nature (IUCN) red list have designated the Painted Honeyeater, Black-eared Miner and Regent Honeyeater as vulnerable, endangered and critically endangered respectively. The Helmeted Honeyeater has however been listed as critically endangered by the EPBC. The threats to these species include – agriculture & aquaculture, biological resource use, climate change, invasive non-native/alien species, disease, natural system modifications and residential & commercial development.

ReagentHoneyeater

Figure: Regent Honeyeater, Anthochaera phrygia (Image source: http://birdlife.org.au/bird-profile/regent-honeyeater)

The state of the four Honeyeaters listed above represent the current situation in Australia. If we assume the projections of Sekercioglu et al. (2004) to take place, it would have serious consequences for the ecosystem. The aim of my PhD is to assess the influence of land-use and land-cover, climate change and other factors on the distribution of different pollinating birds (i.e. honeyeaters: Black-headed Honeyeater, Eastern Spinebill, Crescent Honeyeater, Little Wattlebird, New Holland Honeyeater, Noisy Miner, Strong-billed Honeyeater, Tawny-crowned Honeyeater, Yellow-throated Honeyeater and Yellow Wattlebird) in Tasmania. I’m focusing on land-use and land-cover and climate change since they are considered as the main drivers of global change (Hansen et al., 2001); with land-use change expected to have the largest impact on terrestrial ecosystems and biodiversity in the future, followed by climate change (Sala et al., 2000).

CrescentHoneyeater

Figure: Crescent Honeyeater (Phylidonyris pyrrhopterus) at Fortescue Bay. It’s a bit blurry as I only had a macro lens with me.

 

References

Barker, R. D. & Vestjens, W. J. M. 1990. The food of Australian birds 2. Passerines, CSIRO PUBLISHING.

Ford, H. A. 1979. Interspecific competition in Australian honeyeaters—depletion of common resources. Australian Journal of Ecology, 4, 145-164. https://doi.org/10.1111/j.1442-9993.1979.tb01205.x

Ford, H. A., Paton, D. C. & Forde, N. 1979. Birds as Pollinators of Australian Plants. New Zealand Journal of Botany, 17, 509-519. https://doi.org/10.1080/0028825X.1979.10432566

Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J., Shafer, S., Cook, R. & Bartlein, P. J. 2001. Global change in forests: responses of species, communities, and biomes: interactions between climate change and land use are projected to cause large shifts in biodiversity. AIBS Bulletin, 51, 765-779. https://doi.org/10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2

Longmore, W. 1991. Honeyeaters & their allies of Australia, Collins/Angus & Robertson.

Paton, D. & Collins, B. 1989. Bills and tongues of nectar‐feeding birds: A review of morphology, function and performance, with intercontinental comparisons. Australian Journal of Ecology, 14, 473-506. https://doi.org/10.1111/j.1442-9993.1989.tb01457.x

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B. & Kinzig, A. 2000. Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774. https://doi.org/10.1126/science.287.5459.1770

Sekercioglu, C. H., Daily, G. C. & Ehrlich, P. R. 2004. Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences, 101, 18042-7. https://doi.org/10.1073/pnas.0408049101

 

All posts are personal reflections of the blog-post author and do not necessarily reflect the views of all other DEEP members

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s